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Preitiction Intervals with the
®
Dirichlet Prior

by
Gregory Cammbell and *tyles Hollander

Let xl,...,xn and Yl""’YN e consecutive samples from a Dirichlet
process on (R,7) (the real line P with the Porel o-field 7) with narameter
a. Typically, prediction intervals emnloy the nrevious observations X;,...,X
in order to nredict a specified function of the future sammle Yl,...,YKP
Here one- and two-sided nrediction intervals for at least k of N future obser-
vations are developed for the situation in which, in addition to the previous
sample, there is prior information available. The information is specified

via the parameter a of the Dirvichlet process.

Key wonds: Prediction intervals: Dirichlet nrocess; Bayesian nonparametric

methods: Coverage pronerty.

o 1. INTRODUCTION
> Let Xl,...,Xn be a random sammle of size n from a distribution function
F. Let Yl""’YN be a second random sample of size N from the same distri-

bution function F and let g(Yl,...,YV) be some function of these random vari-
ables. Then, if Ll(xl,...,Xn) and LZ(XI""'Xn) are statistics based on the
initial sample,[Ll,LZJ is said to be a 100y percent prediction interval for
gUlp..dN)if

Pr(Ll(Xl,...,Xn) & g(Yl,...,YN) < LZ(XI,...,Xn)} = vy,
*Research sponsored by the Air Foce Office of Scientific Research, AFSC, USAF,

under Grants AFOSR-74-2581B and AFOSR-76-3109. The United States Govermnment
is authorized to reproduce and distribute reprints for governmental purposes.




Parametric nrediction intervals have been considered by many authors,
including Proschan (1953), Chew (1966), Habn (1969. 1370-,
879N, 1277) . 'dlks (1942, 1962) introduced nonnarametric prediction inter-
vals for the case in vhich F is an unlnown continuous distribution function
and one is interested in intervals to contain at least k of N future obser-
vations. Fligner and “olfe (1976) have anproached nonparametric prediction
intervals via a sample analogue to the vrobahility integral transformation
and to a coverage property (see Section 4). In narticular, they have reviewed
the results of "ilks, developed additional prediction intervals, and gener-
alized prediction intervals to the case of an unknown discontinuous distri-
bution function. A Bayesian approach to nrediction intervals is nresented

in Guttman (1970).

This paper combines nonmarametric and Bayesian anproaches to develop
intervals which allow the use of both nrior information and the data of the
initial samnle, without requiring strong parametric assumptions. Our Rayesian
nonparametric prediction intervals are derived using Ferguson's (1973) Dirich-
let process prior on the space of distribution functions. The Dirichlet nro-
cess is introduced in Section 2. Section 3 nresents the construction of one-
sided Bayesian nonparametric prediction intervals for at least k of N future
observations. The possibility of a coverase nroperty for a sammle from a
Dirichlet process is investigated in Section 4. Section 4 also contains some
useful results concerning the distribution of the order statistics from a
Dirichlet sample. The two-sided nrediction interval problem with prior infor-

mation in the form of a Nirichlet nrocess prior is solved in Section 5. The

final section contains an examnle which illustrates the nrocedure of constructine

Rayesian nonparametric nrediction intervals, and discusses the imnlementation

of such nrediction intervals.




2. PRELIMINAPIES

Let Zl’ s ’Zk be independent gamma random variables with shape oarameters

a; 2 0 and scale parameter 1, i=1,...,k. Define X, ® zi/JZ1 zJ If 1-2-1
then ;.. .»Yy) is said to have a Dirichfet distribution with parameter
(°1""’°'k)' If all the a, are strictly positive, the distribution of
(Yl""’Yk-l) is absolutely continuous with density

£(ygsees¥y) = H%’l[le Yi 1-1] 1- Zy Ky sOyree Vi)
where S denotes the simplex Y; 2 0 for i=1,...,k-1 and kily < 1. The Dirichlet

i=

distribution is also called the multi-beta, in that for k=2, it reduces to the
beta distribution.

The following exnression for the Tise .,rzsh— moment of the distribution of
(Yl,...,Yk), for £ < k and r; a nonnegative integer, will be useful in the
sequel:

L2 Y rz) r(ul-'-rl) I'(a 01'2)1‘(«) ’ )
L T(a,).. T{a, )T (a*r)

E(Y1

where a = Z a; and r = Z T (For a nroof of this result and a more cormlete
i=1 3-1

treatment of the Dirichlet distribution see Wilks (1962). For further back-
ground on the Dirichlet distribution and its generalizations, see, for exammle,
Connor and Mosimann (1969) and fiood (1965).) Let y' ' denote the ascending
factorial y(y+1)...(y+k-1) with y"®'=1. Then the right-hand side of (2.1)

fr,] r
can be rewritten as o 1 ceay L /ul'r’.

The Dirichlet process on the real line can now be defined. Let a be a
nonnegative measure on the real line R with Borel o-field 3, Then P is a
Dinichlet process on (R,R) with parameter a if, for every m=1,2,..., and every
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measurable partition B ..,Q‘ of 2, (D(ﬂl),...,P(“m)) has a Nirichlet dis-

i

tribution with parameter (a(ﬁl),...,a(ﬂm)). This rnrocess gives rise to a

nrobability on the set of distribution functions, as shown in the landmar
parer of Ferpuson (1973). Rv a sample from the pnrocess, it »ill he understood
that a distribution function F is chosen by this nrobability and then a random
sample obtained from F. (See Ferouson (1973) and Rerk and Savare (1977) for a
more ricorous mathematical treatment.) The tractability of Fergsuson's an-
proach lies in part in followino result (Theorem 1 of Ferpuson, 1973). The
nosterior distribution of the Dirichlet nrocess P with narameter o, riven a

sammle Xl""’xr from P, is again a Dirichlet nrocess with as a narameter the

T
undated measure a + ) 8y » where SZ is the measure which concentrates all
i=1 i
its mass of one at the noint z.

For the nurposes of this paner, F is taken to he a nandom distribution
function from Ferguson's Dirichlet nrocess nrior. Given ¥, the first sarnle

Y,, is then a

xl,...,xn is a random sarmle from F. The secon® samnle Yl,.... N

sample  from  the conditional Dirichlet rrocess, given X;,...,Y . Mne
wishes to predict a snecified function of the second samnle. In narticular,
several prediction intervals are obtained to contain at least q of the N

future observations.
3. ONE-SIDED PREDICTION THTTRRVALS "TTH TWE DIRICHLET PRIOR

In this section 107y nercent vrediction intervals of the fom (x,») are
found for at least q of M future observations. Let

R(x) = Pr{x < at least q of the N Y's < =}, (3.1)

Note that R(x) is decreasing in x. The problem is to find Xq such that

R(xo) = vy, for then (xq,w) is the desire” interval.
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Unlike the nonparametric prediction intervals of “ilks (1942, 1962)
and Fliemer and 'olfe (1976), it is mossible, using the Dirichlet nrocess
prior, to form nrediction intervals for the case of no initial sammle of
X's (i.e., n=0). Call this nroblem the ‘'no data'' nroblem. This nroblem
is first solved and then extended in a natural way to obtain the solution
of the ''data" problem (n > 0).

For fixed x, let Ix’Jx’ and ‘-’X denote the random variables for the
number of Y's that are less than, equal to, and greater than x, resnectively.
In the "'no data’’ problem, Yl’ ...,YN is merely a sarmle from a Dirichlet
process with parameter a. For notational convenience, the subscrint x for
1,J, and K is suppressed.

Theonem 1: For Y .Yy @ sample from a Dirichlet process with parameter a,

17
Pr{(1,J,K) = (i,j,K)} =

130 atm0™ e ae,) M a@ ™, i 1

Prood: tribution function F given, a multinomial argument vields %

" PrLIK = (1,3,008) = (| FeOImE-FaO) P, 6.9) |
? Integration of both sides of (3.3) with resmect to the nrobability Qa on the

set of distribution function ¢ives
Pr(LIK0 = (4,1, = ) FEO Re-Fa) Pri-Feo T, ).

Then, by definition of the Dirichlet process, (F(x ),F(x)-F(x ),1-F(x)) has a

,kt—h- moment of this Dirichlet

Dirichlet distribution. Apnplication of the i,j
distribution yields the richt-hand-side of (3.2), completing the nroof.]||

The random variables (Il’ ""Ik) are said to have a Dinichlet compound
multinomial distribution (see Johnson and Xotz, 1969, ». 309) with parameters

k
N,al,...,uk if, for non-negative integers il,. ..,i.k such that jzl ij-N,




T s?

€
ri.
= g
Pr(l. =i g1 e N %
T(Il‘ll,...,lk=1k} = b " 'Il
. N j=1 j
£ 4]
=1

The Dirichlet compound multinomial results (as the name indicates) by nlacing
a Dirichlet distribution on the narameters of a multinomial distribution.
It is clear that the distribution of (1,J,X), civen by (3.2), is Dirichlet
comound multinomial with parareters N,a(-=,x),a({x}).a(x,=).

The one-sided prediction interval nroblem is find X, such that R(xn) =y,

This equation can be rewritten as
N

] Priexactly k of the N future Y ohservations > x5} = v.

k=q
Now, for the '‘no data’’ problenm,

Pr{exactly k of ¥ future observations > x} = P{K=k}.
Since the distribution of (I,J,K) is Nirichlet compound multinomial, the
distribution of X has what is called a beta compound binomial distribution
or a Pélya-Eggenberger distribution (see Johnson and Kotz, 1969, p. 229).
It follows that

M

e N T

Pr{X=k} = d:) a(-=,x]
Therefore, the solution is sought for the following equation in X:

’x-er-](] -rk-‘

¥ :
DRERIC at,®) a@ ™ = v (3.4)
=q

The monotonicity of R(x) from the definition ensures that, for 0 < y <1,
there is either a solution X, to equation (3.4) or there exists an Xq such
that R(xl) <y < R(xi) . If the Dirichlet parameter a is a nonatomic measure,
so that a(-=,t) is a continuous function in t, then the left-hand-side of
(3.4) is contimuous. Further, since R(x) ranges from 1 to 0, in such a case

a solution exists (it mav not be unique). In the second case, if P.(xl) <y <




s

R(xi), the interval [xl,w) is a nredictior. interval for at least aq
of N future observations with prediction coefficient at least y.

The solution to the vnrediction interval ‘“lata’” nroblem is now considered.
Thus. sunnose that an initial samnle Xl’ ...,Xn is observed from a Nirichlet
process. The development for the data problem is immediate in that the
Dirichlet process with parameter o is merely replaced by the Dirichlet pro-

n
cess with updated parameter o' = o + ) 8y and one rroceeds as in the "no
i=1 i

data' problem. Thus, (1,J,X) given (Xl, ...»X_) has a Dirichlet compound

multinomial distribution with narameters N,a'(-=,x),a'({x}),a'(x,2). The

prediction interval is obtained upon the solution of
By M-k Ikl [N
I Q) a'Cex) " atlxe) " fat@® =y, (3.5)
k=q

Here, a' is not nonatomic so either a solution x, exists or there exists an
X; such that fx),=)1s a prediction interval for at least q of N future
observations with nrediction coefficient at least vy.

There are two snecial cases of note. 'hen g="), one obtains the one-sided
upper prediction interval for all M future observations: when g=1, the interval
is the one-sided upper prediction interval for the largest of N future obser-

vations.
4. INVESTIGATINN OF THE COVERAGE PROPERTY FOR. A DIRICHLET SAPLE

The coverage property for a continuous distribution function F, with

Yys-..»Yy @ random saimle from Fj is as follows:

Coverage Propernty: I1f Y(l) .08 Y o) denote the order statistics of the
sample Yl""’YN fron FO, then, for integers n and q such that 0 < p < a < Nel,

the distribution of FO(Y (a)) -FO(Y (D)) has the same distribution as Fn(Y (q-n))

where, by convention FO(Y(O))=O and FO(Y(N*'I))'I'
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Fligner and Wolfe (1976) have extended the coverage property from the
case of a continuous distribution function to that of the empirical distri-
bution function Fn from the initial sample Xl""’xn’ also from FO' In

particular, they prove that the distribution of Fn(Y(q))~Fn(Y )) has the

(P

same distribution as Fn(Y(q-p))'

A question of interest is whether the coverage property holds for
Yl,...,Yn a sample from a Dirichlet »rocess with parameter o«. In particular,
is it true that {a(-w,Y(q)1/a(R)}~{u(-w,Y(p)7/a(P)} has the same distribution
as a(-m,Y(q_p)]/a(R)? If the coverage property were to hold, it would aid
in constructing two-sided prediction intervals directly from one-sided inter-
vals in that if (Y(q_p),w) were a one-sided 100y percent prediction interval,
then (Y(p)’Y(q)] would also be a 100y percent prediction interval for fixed
integers p and q with 0 < p < q < N+1. In that event, one could employ the
techniques derived in the preceding section.

However, the coverage property does not hold for samples from a Dirichlet

process. It sufficies to demonstrate this for the case N = 2, p = 1, and

o q = 2 by comparison of the mean of a(-=,Y ] and

(2) Xyl = o¥gy7 e

the mean of a(-w,Y(l)]. If the coverage property were true, then, in par-

J-a(-=

ticular, Ba(-m,Y(l)] = Ea(Y(l),Y(Z)] or, equivalently,

Y 2Ea (-»,Y = Ea(-w,Y(z)W. 4.1)

’

3
Theorem 2 below, which gives the distribution of the rth

order statistic of
a sample of size from a Dirichlet process, will be used to show that
equality(4.1) does not hold. Since the Dirichlet process places all its mass
on discrete distribution functions (see, for example, Ferguson (1973),
Blackwell (1973), and Berk and Savage (1977)), there can be ties in the

samples from Dirichlet processes. Nonetheless, one can order the random
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variables from a sample of size n from a Diricklet nrocess and derive the

Jdistribution of the order statistics.

Theonrem 2: For 1 < r < n, the distribution Fr of the rth order statistic

of a sample of size n from a Dirichlet process with parameter o is given by
T oM (i1 [n-i1,  ofn3

Fr(x) = Z (i) a(-=,x1" " a(x,*)" /(!(7\) s (4‘2)
i=r
Proo{: Suppose F is a known distribution function with Xl,...,Xn
th

the random sample from F. Then the distribution of X(r)’ the r " order
statistic is:
® n i n-i
PriX ) < x|F} = ] () FOYT(1-Fx)T . (4.3)

i=r

If, in fact, F is a random distribution function from a Dirichlet orocess,
then by definition, for x fixed, F(x) has a beta distribution with parameters
a(-=,x] and a(x,=). Then integrating both sides of (4.3) over F, one obtains

n . .
I @ JFeM1-F) 1" o, )

F.(x) = Pr{x(r) s x} = &

n : : ;
= 7 Oatexataw,a™ N 0@™
=

The final line above follows by the moments of the beta (Dirichlet)
distribution. ||

It is a simple matter to also derive the joint distribution of the
r and st order statistics (r <s).

Theonem 3: If X ,...,Xn is a sample of size n from a Dirichlet process
th

with parameter a, the joint distribution of the r
th

istic X
order statisti )

and the s

order statistic X(S), for 1 <r <s <n, is given by




n n-1i

n : .
E, s(x,y) = 7 % [i,j,n-i-j]a(-w,x][lju(x,y][J]
2 i=r j=max(0,s-i)

5 (4.4)
aly,) P @M, xey)

Proof: Given the distribution function F, the joint distribution of

] X(r) and X(s) is, for x < y:

Pr{X(r) < X, x(S) < }’} =
: (4.5)
n n-1 n i X n-i-j
] ) [i,j,n—i-i] F(x)'[F(y)-F(x) 7 [1-F(y)]

i=r j=max(0,s-i)
Integrating both sides of (4.5) with respect to F, using the definition
of the Dirichlet process for the partition (-«,x],(x,yJ,(y,*), and employing
the moments of the . irichlet distribution completes the proof.| |
By an application of Theorem 2, the distributions, of the first and

second order statistics, for the case N=2, are

FL (0 = [{2a(-=,xTa(x,%)} + a(-=,x1 2" 1/a@?,

F,(x) = a(-=,x1'V7a @y 22,

. It suffices to consider the special case of a(-«,x] = x for x ¢ [0,1] with

ae

a([0,1]) = 1 and a«(R-[0,1]) = 0. Then,

1
Ea(-w,X(I)] = E(X(l)) = IO xdF, (x)

1 1
= ]0 (1-F; (x))dx = Io {1-x(1-x) -%x (x+1) }dx = 5/12.

In a similar fashion,

1
Ea(-w,X(Z)] = E(X(z)) = Io xdF, (x)

1 1
= [0 (1-F,(x))dx = ]0 {1 - 4x(x+1)}dx = 7/12.
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Thus equation (4.1) does not hold for this special case. Therfore, the

coverage property is not valid for a sample from a Dirichlet nrocess.
5. TWO-SIDED PPEDICTION INTERVALS WITH THE DNIRICHLET PRIOR

The problem of generating two-sided 100y percent prediction inter-
vals of the fom (x,y), for x < y, to contain at least a of N future ob-
servations from a Dirichlet nrocess, requires more notational development.
Let I, J, K, L, and ™ (all dependent on x and/or y with the notational
dependences sunpressed be random variables for the number of Yl’ s ’YN
that are less than x, equal to x, between x and y, equal to y, and greater
than y, respectively. (Note that I, J, and X have been redefined and should
not be confused with their use in Section 3.)
Theorem 4: If Xl,. . .,Xn is a sample from a Dirichlet process P (say) with

parameter a and Yl, e .,YN is a second sample from the conditional process

P given Xl,...,Xn, then for x and y with x <y,

Pr{(I,J,K,L,I1) = (i,j,k,t,m)lxl,...,)(n}

N 4 2
= {i,j.k,z,m]a'(-«»,x)ma'({x})“Ju'(x,y)"k’u'((y))“” (5.1)

o' (y,2) ™ e )™,

where a' = a + rzl 8y
1=1 1
Proo4: The conditional probability distribution of (I,J,K,L,!T) given
xl, . .,Xn and F is obtained by a multinomial arpgument. Integration over F
and application of the mean of the Dirichlet distribution for (F(x),
F(x) - Fx'), F(y') - F(x), F(y) - F(y'), 1 - F(y)) yields (5.1).}||
The distribution of (1,J,K,L,M) given X,,.. .,Xn is Dirichlet compound

multinomial with parameters N, a'(-=,x), a'({x}), a'(X,y) a'({y}), a'(y,=).

-
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Note that if n = 0 and x = y so that K = 0 and J and L are combined,
Theorem 1 is obtained as a special case.
For x < y, define
3 R(x,y) =Pr{at least q of the Y's are in the interval (x,y)}
N
= ] Pr{exactly p of the Y's are in the interval (x,y)}.
P=q

Note that for x fixed, P(x,y) is increasing in y and that, for y fixed
R(x,y) is decreasing in x. The prediction interval problem is to find
(xg»>Yp) such that R(xysYy) = v. However, from Theorem 4 and the fact
that the marginals of the Dirichlet compound multinomial are beta campound
binomial, K has a beta compound binomial with parameters N, a«'(x,y),
a'(R-(x,y)). Thus,

N N
Rex,y) = ) Prik=p)= ] () o' %,y) Plar R- ¢, y)) NP Ve @)™, (5.2)
P=q P=q

A trial-by-error solution to find (xo,yo) such that R(xo,yo) = y is one way
of proceeding. The solution (if it exists) need not be unique and in fact

an uncountably infinite mumber of pairs is possible. Note that as x or y

:’i is shifted, a'(x,y) may change, so that a computer in many cases is an in-
. valuable aid in the detemmination of such prediction intervals for even small
values of n and N.
It is clear that one could easily construct prediction intervals of the

form (x,yl, or (x,y! instead of (x,y). For example, for the interval [x,yl,
< one employs the fact that J + K + L has a beta compound binomial distribution
: with parameters N, a'(x,y], a'(R-[x,y1) and proceeds as above.
In the event that a(R) is small, there may be no solution to R(x,y) = y.
In that case, one could find X, and Yy such that R(xl,yl) <ys R(xi,y;). Then

[xl ,}'11 is a prediction interval for at least q of N future observations with

prediction coefficient at least y.




13
6. AN EXAMPLE

In this section, two-sided non-Bayesian nonparametric and Bayesian non-
parametric (Dirichlet) prediction intervals for at least q of N future obser-
vations are illustrated using a numerical example originally introduced by
Hahn (1970a). He gives the following data, on failure times (in months) of
a new type of machine, recorded for five prototypes: 51.4, 49.5, 48.7, 49.3,
51.6. To illustrate our procedure we suppose that there is prior evidence
(from rast experience relating to a similar machine) which suggests that the
underlying life distribution can be approximated by a normal distribution with
a mean of 50 and a standard deviation of 1.25. Thus, to apply the two-sided
Bayesian nonparametric prediction interval introduced in Section 5, we will
set {a(-=,x1/a(R)} = o({x-50}/1.25) where ¢(-) is the standard normal cumula-
tive distribution function. We must also specify a value for a(R). This speci-
fication hinges on the degree of confidence or belief that one invests in this
choice for the measure a. For this case, suppose we set a(R) = 5. Roughly
speaking, this corresponds to a prior sample size of 5 observations. Since
n also equals 5 here, the prior and the initial sample of size S are equally
weighted in their contribution to the prediction interval. Rather than to
construct the different prediction intervals (which may not be unique) for
a fixed predicticn coefficient, for simplification we let the prediction

intervals (x(l),x(sj) and [x(l),x(s)] be chosen and the prediction coefficients

computed. (Note that any order statistics could have been chosen for the sake
of comparison of Dirichlet and nonparametric prediction intervals, but that
unlike the Dirichlet intervals, the nonparametric ones demand that only order

statistics of the initial sample serve as endpoints.)
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Consider the two-sided prediction interval for a single future obser-
vation (N = 1). The non-Bayesian nonparametric prediction coefficient for
the interval (x(l),x(s)) = (48.7,51.6) based on the n = 5 initial observations
is as follows [see Wilks (1942) or Danziger and Davis (1964) for details]:

Pr{exactly N0 of N future observations fall in (X(l),X(n))}

(6.1)
= n(n-l)(N-N0+1)N!(N0+n-2)!/{N0!(N+n)!}.

Substituting into (6.1) withn =5 and N = N0 = 1 yields the value 2/3 for
the prediction coefficient. Contrast this with the Dirichlet prediction

coefficient, for the same interval, as given by (5.2):

= 1Y 4 (13, ypy (1]
Ry Xesy) = (1] o Xy Ko

= {5(.7505)+3}/10 = .675.
However, if the interval is expanded to include the endpoints, the non-
parametric prediction coefficient does not change, but the discreteness
of the Dirichlet process causes an increase in the Dirichlet coefficient to

{u’[X(l),X(S)1/a'(R)} = {5(.7505)+5}/10 = .875.

To illustrate the crucial nature of the choice of a(R), suppose
a(R) = 20. Then the Dirichlet prediction coefficient of (48.7,51.6) is
(20(.7505)+3)/25 = .720. The limit as a(R) tends to infinity can also J
be easily computed. As a(R) increases, greater confidence is nlaced on

the prior at the expense of the initial sample. In this case that is re-

flected by the result that in the limit the prediction coefficient for
(48.7,51.6) (and also for [48.7,51.61) is .7505. This value is of course
Pr(48.7 < X < 51.6), where X is normal with mean 50 and standard deviation ;
1.25.

Note that the nonparametric and Dirichlet prediction coefficients also
do not agree as a(R) tends to zero (corresponding to less and less confidence
in the prior). in our example, the nonparametric coefficient for (48.7,51.6)
remains 2/3, whereas the Dirichlet coefficient approaches .6 as a(R) tends

to zero.
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